
Ann. N.Y. Acad. Sci. ISSN 0077-8923

ANNALS OF THE NEW YORK ACADEMY OF SCIENCES
Issue: The Year in Cognitive Neuroscience

Concepts and principles in the analysis of brain networks

Gagan S. Wig,1 Bradley L. Schlaggar,1,2,3,4 and Steven E. Petersen1,2,4,5

Departments of 1Neurology, 2Radiology, 3Pediatrics, and 4Anatomy and Neurobiology, Washington University School of
Medicine, St. Louis, Missouri, and 5Department of Psychology, Washington University, St. Louis, Missouri

Address for correspondence: Gagan S. Wig, Department of Neurology, Washington University School of Medicine, 4525 Scott
Avenue, Campus Box 8111, Room 2220, St. Louis, MO 63110. gwig@npg.wustl.edu

The brain is a large-scale network, operating at multiple levels of information processing ranging from neurons, to
local circuits, to systems of brain areas. Recent advances in the mathematics of graph theory have provided tools
with which to study networks. These tools can be employed to understand how the brain’s behavioral repertoire is
mediated by the interactions of objects of information processing. Within the graph-theoretic framework, networks
are defined by independent objects (nodes) and the relationships shared between them (edges). Importantly, the
accurate incorporation of graph theory into the study of brain networks mandates careful consideration of the
assumptions, constraints, and principles of both the mathematics and the underlying neurobiology. This review
focuses on understanding these principles and how they guide what constitutes a brain network and its elements,
specifically focusing on resting-state correlations in humans. We argue that approaches that fail to take the principles
of graph theory into consideration and do not reflect the underlying neurobiological properties of the brain will
likely mischaracterize brain network structure and function.
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Introduction

Numerous theoretical frameworks have guided the
science of brain function. Until the 19th century,
the predominant neuroscientific view held that cog-
nitive processes were a product of the integrated
functioning of the entirety of the brain and that
the cerebral cortex was not composed of dissocia-
ble functional structures (i.e., cortical equipoten-
tiality1). Several lines of evidence converged on a
view of brain organization that emphasized local-
ization of function whereby the cerebral cortex is
composed of functionally distinct areas that medi-
ate distinct processing operations. For example, ex-
amination of patients with focal brain damage (e.g.,
Refs. 2–4) revealed that lesions in specific locations
produced specific deficits. The first known electri-
cal stimulation studies of the cerebrum showed that
electrical current delivered to certain brain regions,
but not others, could reproducibly generate a mo-
tor response,5 whereas Caton can be credited as
being the first to make electrophysiological record-
ings from the brain.6 Complementing these studies,

detailed neuroanatomical investigation in the early
20th century revealed the differences in cytoarchi-
tectonics across the cerebral cortex (e.g., Refs. 7 and
8), providing clear evidence of a nonhomogenous
organization consistent with the notion of function-
ally discrete cortical areas. Observations obtained
using more modern brain imaging hardware have
largely supported the functional specialization point
of view (e.g., Ref. 9). In fact, some neuroimaging
researchers have argued that the cerebral cortex is
composed, at least in part, of specialized areas that
are dedicated to highly complex cognitive tasks or
domains (e.g., thinking about others’ thoughts; e.g.,
Ref. 10), a relatively extreme position on localization
of function.

In parallel to observations providing evidence
for cortical specialization, a separate body of work
placed an emphasis on determining how informa-
tion exchange between distinct areas may give rise
to cognitive processing (e.g., Refs. 4 and 11). Initial
support for the idea that brain connectivity me-
diates cognition was largely based on observations
obtained in animal models and careful examination
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of patient populations, wherein it was hypothesized
that disrupted information exchange between brain
areas could account for the behavioral disturbances
that accompanied focal brain damage and psychi-
atric problems (for review, see Ref. 12). As a natural
extension of these observations, typical cognitive
functions such as attending to the outside world
were considered to be a product of orchestrated in-
teractions between multiple distributed brain areas
that each mediated functionally specialized process-
ing operations.

Brain science has largely maintained the view-
point that cognitive processes are a product of the
complex interactions between distributed objects of
information processing.13,14 This position has been
greatly fueled by advances in the ability to quantify
relationships between objects of interest. For exam-
ple, modern brain imaging hardware and analysis
techniques have enabled noninvasive measurement
of the relationships shared between brain structures
both in terms of evoked activity (e.g., effective con-
nectivity15,16) as well as those that may reflect func-
tional17 (but also, see Ref. 18) or anatomical (for
review, see Ref. 19) relationships not contingent on
immediate task demands. Careful measurement of
relations between brain structures has led to the
concept that the brain is a large-scale network that
is characterized by manifold connections and shared
relationships.

Despite its seemingly unequivocal complexity, re-
cent evidence suggests that the brain network, like
numerous other systems, both man-made and bi-
ological, exhibits an underlying organization that
characterizes and mediates its functions. A criti-
cal question is how does one go about untangling
and making sense of this organized complexity?
Numerous solutions have been offered. Although
preliminary descriptions of brain networks have
provided tantalizing descriptions of brain network
architecture, it appears that there are almost as
many diverging methods for conducting the anal-
yses as there are publications on the topic (for re-
cent reviews, see Refs. 20–22). Although we suspect
that some choices of analysis and representation of
networks may not significantly impact what is ex-
tracted from the underlying data, in the pages that
follow we will argue that it is important that the
decisions be guided by knowledge of fundamental
principles relating to both the methodological ap-
proach (e.g., choice of analysis tools and models)

and the nature of the network of interest (i.e., the
brain).

We will largely focus our discussion and examples
on the analysis of resting state functional connectiv-
ity MRI correlations (rs-fcMRI,17,23 and for review,
see Ref. 24), although many of the concepts and
principles we invoke are equally applicable to the
analysis of brain networks based on other types of
relationships (e.g., structural, metabolic, electrical).
rs-fcMRI correlations are defined by the temporal
relationships of distinct brain areas observed in the
absence of experimental demands. These relation-
ships appear to mirror the distributed activity ob-
served across a wide range of tasks and have been
shown to be relatively reliable.25–27 Accordingly, they
offer a metric with which to quantify the strength of
functional relationships between distributed brain
areas.

To foreshadow the arguments to come, we take the
position that any approach investigating brain net-
work organization needs to simultaneously consider
pairwise relations between the objects of interest,
and that this goal is best achieved by the application
of graph theory.28,29 Furthermore, brain network
analyses must also be grounded and constrained by
assumptions and principles that are neurobiolog-
ically driven. To that end, we will argue that the
current resolution limit of functional brain imaging
constrains brain network descriptions to the level of
cortical areas, and parcellations of subcortical nuclei
at a similar level. A failure to strive to represent ele-
ments of the brain network accordingly would likely
result in mischaracterization of the brain network
itself.

Networks and graph analysis

A network is a set of objects that interact or
share some relationship with one another. Net-
works can be biological (e.g., social networks,
ecological networks, and networks of protein–
protein interactions) as well as nonbiological (e.g.,
communication networks such as the World Wide
Web, electrical power grids, and air-transportation
networks; for review, see Ref. 30). Accordingly, the
science of networks tends to cross numerous, seem-
ingly unrelated research disciplines and has appli-
cations ranging from controlling disease outbreaks
to designing efficient urban centers. Critical in
describing a network is that the objects, and the
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relationships the objects share, can be formally iden-
tified and quantified in a meaningful way.

As the number of objects and relationships shared
between these objects begins to increase in a given
network of interest, it becomes increasingly difficult
to represent the network in an efficient and orga-
nized way. Like numerous other researchers study-
ing the science of networks, we advocate the adop-
tion of graph theory, a branch of mathematics in
which mathematical structures (graphs) are used to
model pairwise relations between objects (for com-
prehensive introductions, see Refs. 28 and 29). The
following section (1) reviews some basic principles
of analyses using graph theory, including how si-
multaneously considering all pairwise relationships
across objects in a network can be useful for un-
derstanding the structure and function of networks;
and (2) outlines some of the current limitations of
alternative approaches in the brain sciences.

Using graph theory, networks are most often de-
scribed using one of two types of notations, but oth-
ers are also possible and may be preferred depend-
ing on what information is to be represented. Each
type of notation has its advantages, and each can
typically be used to construct the others. Common
across notations is the formal definition of the ob-
jects and their relationships. For present purposes,
we will focus on the use of matrices and graphs to
represent networks. A matrix of a network is typ-
ically referred to as an adjacency matrix, in which
each cellIJ describes some relationship between ob-
ject I and object J (Fig. 1A). Although matrices are
a convenient way of efficiently representing a large
amount of information, the network structure of
numerous relationships can be difficult to visually
apprehend when the matrix consists of more than
a handful of objects and relationships. Graphs are
abstract representations of the components of a net-
work whereby objects are symbolized by nodes or
vertices and the pairwise relationships shared be-
tween these objects are symbolized by edges or links
(Fig. 1B). Although graphs do not completely ease
the burden of deciphering network organization,
they can be useful in visualizing important proper-
ties of the network’s structure.

To illustrate the utility of graph theory for under-
standing the broader implications of considering
pairwise relationships within a network, we will fo-
cus on two sets of properties that are frequently
used to describe and understand network struc-

ture. For the purposes of this exercise, we will refer
to the friendship network we have constructed in
Figure 1. In this friendship network graph, nodes
represent individuals in a fictitious social commu-
nity, and edges represent mutual ties of friendship
between the individuals. As one might expect, a real
friendship network is typically much more compli-
cated than the simple network depicted here. For
example, social groups often include ties that are
positive (friends) and negative (enemies, i.e., signed
edges), can be in one direction or the other (i.e.,
directed edges) and have different strengths of rela-
tionships (i.e., weighted edges). Importantly, graph
theory is well suited to incorporate many of these
and other factors of interest. Nonetheless, we hope
the reader will bear with our oversimplified model
of a friendship network for purposes of illustration,
as we will also be referring to details and concepts
revealed from this model in subsequent sections.

The first set of graph properties we will highlight
considers the position of an individual (node) in a
network, and how this position can confer differ-
ing levels of “importance” of that individual toward
information transfer and maintaining network in-
tegrity. Although individuals 7 and 13 each have six
friends (or node degree 6), focusing on node de-
gree misses the obvious role that individual seven
assumes in the general integrity of the network.
This individual’s network position makes him/her
an important conduit for information flow between
relatively separate large groups of individuals (i.e.,
between the groups denoted by a blue and red un-
derlay and the group denoted by a green underlay).
Relatedly, if seven were removed from the network,
the network would split the friendship network into
two disconnected parts (assuming, of course, that
additional friendship alliances were not formed in
response to 7’s actions). What this example high-
lights is a concept referred to as the betweenness
centrality of a node: a measure that reflects the in-
cidence with which a node occurs on many shortest
paths between other nodes in the network. Interest-
ingly, when considered according to this measure of
betweenness centrality, individual 18 is more central
than 13, despite the fact that individual 13 has more
friends.

The second set of graph properties we will
highlight considers the “clumping” of highly con-
nected individuals into subgroups within a network.
Returning to the friendship network example, if we
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Figure 1. Two representations of a hypothetical friendship network. (A) Matrix representation of a social network. Elements
(1–24) across the top row and down the leftmost column represent individuals. For every cellIJ, the presence of a tie of friendship
between the corresponding individuals I and J is denoted by a “1” and colored gray, whereas the absence of friendship is denoted by
a “0.” Individuals’ labels are color-coded according to their corresponding community assignments in panel B. (B) Corresponding
graph representation of the social network. Individuals are represented as nodes in the graph (stick figures); ties of friendship
between the individuals are shown by the presence or absence of an edge connecting the two individuals. Color underlay denotes
community assignments calculated using modularity optimization.32 Using this method, communities reflect groups of nodes that
are more connected with one another than would be expected by chance. Three communities were identified (blue, red, and green).
Focusing on the nodes of the network reveals unique properties about the individuals. Some individuals can serve as high degree
“hubs” for the network, as they have the highest number of relationships (i.e., 7 and 13, highlighted by orange and yellow arrows,
respectively). An important relationship exists between individual 7 and individual 18 (pink arrow). If the relationship was severed,
and no other ties were formed, the network would be divided into two unconnected components (blue and red community vs. green
community). This property is captured by a node’s betweenness centrality, the extent to which a given node lies on shortest paths
in the network. Interestingly, individuals with high degree need not have high betweenness centrality, as is evident for individual
13, and individuals with low degree can rank high on betweenness centrality, as is evident for individual 18.

were to consider each of the friendship ties in iso-
lation, we might assume that these ties were dis-
tributed somewhat randomly. We would miss the
fact that the network contains a high incidence of
clustering. In our social network example, quantifi-
cation of this parameter would reflect the extent to
which two individuals who are friends have other
common friends. Relatedly, clustering can lead to
subgroups of nodes that are richly connected to one
another within the looser structure of the entire net-
work. These subgroups are referred to as modules or
communities that tend to reflect collections of nodes
that share common features or functions, and sev-
eral algorithms can be used to define membership
quantitatively (e.g., Refs. 31–33). As is apparent, the
fact that two nodes share a relationship does not
mandate that they are in the same community, or
even that they have any other relationships in com-

mon. All of these properties are only revealed when
the pairwise ties of a network are considered simul-
taneously; we would have been oblivious to them if
we had not considered all the friendship ties in the
social network.

Constructing a brain network

At its most complete depiction of reality, a rep-
resentation of a brain network should include all
the cortical and subcortical elements of informa-
tion processing (nodes) and all the pairwise rela-
tionships shared between these elements (edges).
For example, to generate a representation of an rs-
fcMRI brain network, nodes should first be defined
by parcellating the brain into meaningful objects
of interest (e.g., brain areas). Building the adja-
cency matrix (i.e., defining the edges) then requires a
quantification of the pairwise relationship between
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each of the nodes in the network (e.g., the pres-
ence of a significant correlation between two area’s
resting-state timecourses).

It is important to realize the differences between
an approach that utilizes graph theory to examine
relationships within a network and some of the fre-
quently used alternatives. One method commonly
employed in rs-fcMRI studies is to generate a sta-
tistical map that represents correlation strength be-
tween a specific seed location and all other voxels
in the brain (e.g., Refs. 17, 23, and 34). These maps
reflect the strength of the relationship between each
voxel in the brain and the seed, yet say nothing about
how the identified voxels, or groups of voxels relate
with one another or with any other group of voxels
in the brain. In network terms, what are being iden-
tified are the neighbors of a particular node (i.e., the
brain regions with which the seed region exhibits the
presence of a relationship at rest); seed-based cor-
relation maps are akin to identifying all the friends
of an individual, without knowing anything about
how those friends relate to one another or with other
individuals of a social network. If we only defined
the neighbors of node 7 in our friendship network
(Fig. 1), we would fail to realize that these neigh-
bors are actually parts of three different friendship
communities.

To explicitly illustrate this preceding point, we
conducted seed-based resting-state correlation anal-
yses on a group of healthy young adults using a
commonly employed preprocessing and analysis
stream (n = 52; see Ref. 35 for details about par-
ticipants, scanning, and preprocessing). The anal-
ysis was focused on the posterior cingulate cor-
tex (pCC) of the “default network,” a collection
of brain regions that exhibit reliable patterns of
task-induced deactivation during the performance
of many goal directed tasks and are often correlated
with one another during periods of rest36,37 (for re-
view, see Ref. 38). Resting-state timecourses were
extracted from 5 mm radius spherical seed regions
of interest (ROIs) generated around two previously
published pCC peak coordinates identified from
two different imaging methods (i.e., task-induced
deactivations, MNI peak coordinates: 0 −45 42
[Ref. 39] and resting state correlations, MNI peak
coordinates: −1 −34 38 [Ref. 34]. The correlation
images of both seed regions were highly similar and
revealed strong correlations with other regions of
the default network (e.g., the angular gyrus and the

ventromedial prefrontal cortex [vmPFC]). The left
panel of Figure 2A depicts a conjunction of the two
pCC correlation images, where the magnitude of
the conjunction image reflects the average correla-
tion across the independent pCC correlation im-
ages. The far left panel of Figure 2B depicts these
same results in “pseudo-network” space, whereby
the pCC has been placed in the center of the fig-
ure and a number of the regions identified in its
correlation image are positioned around it (i.e., its
neighbors). Although the pCC is related to each of
its neighbors (by definition), it is not possible to
know whether the neighbors themselves are related
with one another without further analysis. To exam-
ine this possibility, resting-state timecourses were
extracted from ROIs built around each of pCC’s
neighbors and pairwise correlations of all of these
timecourses were computed to determine the pres-
ence of significant relationships (P < 0.001; middle
panel of Fig. 2B). Although many of the pCC neigh-
bors share a relationship, it is clear that there are
a few exceptions (e.g., the anterior prefrontal cor-
tex [aPFC] and the parahippocampal gyrus [PHG]).
Accordingly, even among regions of the default net-
work, the time course of regions correlated with the
pCC need not be correlated with one another.

Curiously, in addition to regions typically asso-
ciated with the default network, a number of other
regions are correlated with the pCC as well, such
as the dorso-lateral portions of the left and right
middle frontal gyrus (MFG; Fig. 2A, left panel).
Furthermore, the MFG also shares a relationship
with other default regions (e.g., the angular gyrus;
Fig. 2B, center panel). The MFG is typically impli-
cated in operations related to control processes,40,41

and does not typically exhibit task-induced deac-
tivations.37,42 In parallel, studies of resting-state
correlations have frequently reported functional
connectivity between the MFG and other fronto-
parietal control regions (e.g., Refs. 43–45). A likely
possibility is that dissociable regions along the MFG
exhibit heterogeneous processing operations. As
such, the MFG region identified using our pCC seed
may be distinct from the MFG regions that tends to
correlate with control regions.

As a test of this hypothesis, we placed a seed in
the right MFG identified in the pCC correlation
image to examine its functional connectivity (MNI
peak coordinates: 42, 24, 40; right panel of Fig. 2A).
Although the correlation map reveals correlations
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Figure 2. Seed- and ICA-based rs-fcMRI images fail to reveal the complete structure of pairwise relationships. (A) Statistical images
on the left depict the results of a seed-based rs-fcMRI analysis. The pCC is strongly correlated with regions of the default network
(e.g., vmPFC, angular gyrus) as well as other regions not typically linked to the default network (e.g., right MFG). The timecourse
of right MFG was subsequently extracted to determine its seed-based correlations (statistical images on the right). The right MFG
is strongly correlated with a number of default regions (e.g., pCC, angular gyrus) as well as regions that have been implicated in
control processes (e.g., aCC, aI/fO, IPS), suggesting that while the two seed regions (pCC, MFG) are correlated at rest and share
some common neighbors, they also exhibit different sets of relationships with other regions. (B) Depicts the rs-fcMRI analyses in
graph space to illustrate how seed-based connectivity maps identify the nearest neighbors of the seed region. While the neighbors
of the pCC (far left panel) are reliably connected with the seed ROI by definition, there is no information about the presence or
absence of a relationship between the neighbors themselves. The middle panel depicts the significant relationships observed among
the pCC neighbors (based on the correlations of their extracted timecourses). Although some neighbors of the pCC are correlated
with one another (e.g., the vmPFC and left PHG), others’ relationships are absent (e.g., the left aPFC and PHG). Notably, the right
MFG region is correlated with other default regions as well (e.g., right angular gyrus). The rightmost panel includes the neighbors
of the MFG that were identified by generating its seed-based correlation map as also depicted in the rightmost panel of (A). On its
own, seed-based correlation images are unable to reveal the presence or absence of relationships amongst the seed’s neighbors and
with respect to other brain regions. Network space was visualized using a Kamada-Kawai algorithm implemented using the Social
Network Image Animator software (SoNIA: http://www.stanford.edu/group/sonia/). (C) ICA identifies a “default” component that
also includes the right MFG region, highlighting how independent components can also fail to reveal meaningful substructure both
within and between components; ICA map adapted from Ref. 48.

with the pCC and other regions of the default net-
work such as the angular gyrus (consistent with the
pairwise correlations noted in the middle panel of
Fig. 2B), many prominent correlations are present

with regions linked to control including the inferior
parietal sulcus (IPS), anterior insula/frontal oper-
culum (aI/fO), and anterior cingulate cortex (aCC),
suggesting that the MFG we have identified in the
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pCC correlation map may indeed be a part of the
same area frequently discussed in the context of con-
trol operations (right panel of Fig. 2B). To test fur-
ther the possibility that the MFG region may exhibit
distinct processing operations from that of pCC or
any of the other default regions, we extracted the
signal change of these regions from the task-evoked
data set that was used to initially identify one of the
pCC seeds (see Ref. 39 for details about experimen-
tal design and methods). This analysis revealed that
during performance of an odd/even number judg-
ment task, the pCC, in addition to many of the other
typical default regions, exhibits deactivation relative
to baseline (pCC: t(44) = 7.69, P < 0.001), whereas
the MFG demonstrates a trend for increased activ-
ity relative to baseline (t(44) = 1.75, P = 0.08),
providing evidence for a distinct processing role.

It should be apparent that simply examining a
seed-based correlation image does not reveal how
regions correlated with the seed are related to one
another or with other brain regions, and that re-
gions that subserve different processing operations
and patterns of connectivity can be correlated with
one another. Although we have not formally cal-
culated the community assignments in this spe-
cific example (accurately doing so requires a more
complete description of pairwise correlations be-
tween all brain regions, as outlined earlier), based
on the results we have described it is possible that
the pCC and MFG exist in different functional
communities.

A second method that has been commonly used
to identify patterns of correlation at rest employs a
spatial-temporal decomposition of the resting-state
time series using independent component analysis
(ICA; e.g., Ref. 46). This multivariate approach sep-
arates resting-state BOLD signals into maximally
statistically independent, spatial-temporal compo-
nent maps. These components are then sorted into
those that likely reflect components of noninter-
est or physiological noise, and those thought to
be functional-anatomically important (often called
resting-state networks [RSNs]). Although there are
numerous methods for performing this last step, it is
often done using some form of a template matching
procedure where each component is compared to a
set of “canonical” network maps (e.g., the default
network). ICA has been used to identify numerous
components thought to relate to sensory processing
(e.g., vision, audition, motor, somatosensory), the

“default mode,” executive control, and visuo-spatial
attention (e.g., Refs. 25, 26, and 47).

As with seed-based correlation maps, it is inap-
propriate to assume that an ICA-derived RSN is a
distinct community of the network. The indepen-
dent components reflect decompositions whereby
each voxel in the component shares some tempo-
ral covariance with other voxels in that compo-
nent. In this way, the information inherent in these
components is different from the maps generated
from seed-based correlations, which only reflect the
relationship between each voxel and the seed re-
gion used to generate the statistical map. However,
just as caution is warranted when assuming seed-
based correlation maps reflect a community struc-
ture, so is the case for independent components.
If ICA RSNs are the end stage of an analysis, the
failure to assess the relationships between the sub-
structure within a component and the relationships
across components leaves the description of the net-
work incomplete. At its best, it would be as if the
three parts of the network in 1b were determined as
groups of individuals, but all of the structure within
a group and the relationships between the groups,
were left out. As a familiar example, close inspection
of a “default component” identified using ICA re-
veals inclusion of the MFG region highlighted earlier
(Fig. 2C; Ref. 48).

The preceding set of comments is not to say that
the information extracted by applying either of these
methods (seed-based correlations, ICA) could not,
in principle, be used for building a network adja-
cency matrix. Critically, however, doing so necessi-
tates a fuller description of the pairwise relationships
across putative brain areas followed by formal inter-
rogation of these relationships using tools such as
those within graph theory that are able to formally
characterize network structure.

Although graph theory and its attendant tools
provide an immensely powerful framework from
which to study networks, the application to the
study of brain networks is not straightforward. Most
tellingly, the definition of the objects (nodes) of in-
terest and the portrayal of the relationships (edges)
between them raises a set of complex issues that
are certainly not resolved at this point. Suboptimal
representation of either of these elements can result
in a distortion of important network properties.49

We will next present our current ideas about these
issues, attempting to address both the assumptions
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of the tool as well as the inherent properties of the
system of interest.

Defining a node in a brain network

The nervous system functions as a large network of
billions of independent processing elements (neu-
rons), which are connected via axons spanning a
total length of thousands of miles. A single neu-
ron typically receives a large number of inputs from
many other neurons, transforms this information,
and then sends the processed information to many
other connected neurons for further processing. Im-
portantly, the patterns of anatomical and physio-
logical relationships between neurons form specific
patterns of spatial organization at multiple scales.
In the cerebral cortex, for example, neurons form
local circuits of computation. These circuits are of-
ten organized into larger units called columns that
are about 1 mm in diameter. Functionally related
columns form cortical areas roughly at the centime-
ter scale. Areas with similar functional properties
and shared connections are then often grouped into
functional systems. Each of these levels of organiza-
tion could provide important objects of interest for
network analysis.50

The advent of brain imaging has allowed non-
invasive measurement of whole-brain anatomical
features and correlates of neural physiology. Re-
cent advances in imaging techniques have enabled
rapid acquisition of large-scale data sets, which are
amenable to the identification of many objects of
interest as well as the anatomical or functional re-
lationships shared between them. An important
consideration when representing brain networks de-
rived from brain imaging is the current resolution
limit of the imaging tools, which enable the mea-
surement of voxels that are typically cubes of a few
millimeters. Accordingly, this spatial constraint lim-
its brain network analysis to nodes above the mil-
limeter scale, a limit appropriate to the scale of brain
areas in the cortex, and nuclei or parcellations of cer-
tain nuclei in subcortical structures.

The challenge in defining brain nodes at this
level lies in accurately identifying the appropriate
boundaries to parcellate each of the unique areas,
or nuclei, or subnuclei. Whereas individuals of a
social network can be identified with relative ease,
segmentation of cortical and subcortical structures
into independent structures that exhibit dissocia-

ble information processing operations is a more
formidable task. Unlike the map of the countries
of the earth, which delineates geopolitical bound-
aries, brain science has yet to create a robust and
reliable “brain map” that allows identification of
each of the individual cortical areas, or subcortical
parcellations. Nonetheless, neuroscientific studies
of humans and other animals have provided am-
ple evidence that the brain is composed of discrete
and dissociable brain areas, and that these brain ar-
eas exhibit unique properties that allow them to be
differentiated.

In the cortex, brain areas are characterized by
properties related to both structure and function.
These properties include architectonics (i.e., cyto-,
chemo-, and myeloarchitectonics), patterns of com-
mon or dominating interareal connectivity, phys-
iological characteristics (inferred from single and
multiunit recording, analysis of deficits following
focal lesion, and functional neuroimaging), and to-
pographic organization.51,52 As an example, each of
these properties can serve to distinguish primary vi-
sual area V1 from area V2. The cortical columns of
V2 can be easily differentiated from those of V1 by
a presence of large pyramidal neurons in layer III
of the former and a cell-poor sublamina IVb in the
latter.7 LGN input to V1 is evidenced by the stria
of Gennari, a stripe of myelinated axons that termi-
nates in layer IV of V1 gray matter (e.g., Refs. 53
and 54). Along these lines, examining patterns of
interareal connectivity reveals that both areas ex-
hibit similar patterns of direct reciprocal connec-
tivity with a collection of visually responsive areas;
however, a number of differences exist that allow
differentiation such as the connectivity with ventral
intraparietal area (VIP), which is strong for V2 but
not V1 in the macaque cortex.51 Functionally, al-
though both V1 and V2 contain neurons that are
selective for stimulus orientation, spatial frequency,
length, direction, and binocular disparity,55–60 V2
neurons exhibit larger receptive field sizes and sen-
sitivity to more complex visual properties such as
subjective contours.61,62 Furthermore, a complete
map of retinotopic space is recapitulated in each of
the two visual areas providing further support of
distinct processing operations on visual input. Im-
portantly, a similar approach as that highlighted in
our example has been used to identify brain areas
within sensory (e.g., auditory,63 somatosensory, and
motor51) as well as “association” cortex (e.g., frontal
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cortex64,65), suggesting that areas are an organizing
principle throughout the brain.

Given that many of the techniques used in the
animal studies are not easily available for living hu-
mans, how does one use noninvasive imaging to
identify brain areas for the purposes of node defi-
nition? As is the case for defining areas in animals,
it is likely that no single approach will arrive at a
complete and robust description of brain areas in
humans, and methods for identifying these parcels
are in early stages. Ultimately, as in animal studies,
this goal will likely be achieved by mutually infor-
mative evidence provided by numerous techniques
and modalities,66 that converge on a consensus set of
areas. At present, we advocate approaches that lever-
age the availability of large-scale data sets to identify
consistent “hot spots” of task-evoked activity as well
as techniques that are able to parcellate brain areas
based on patterns of connectivity or clustering.

One approach for constructing a large-scale
“areal” node set involves searching across large
collections of task-evoked fMRI studies to local-
ize brain activity circumscribed to distinct brain
regions (i.e., finding peaks or “hot spots”) and
then building regions around these hot spots
(e.g., spheres). The logic here is that the hot
spots represent epicenters of activity within ar-
eas that likely mediate dissociable and function-
ally meaningful information processing operations.
Utilizing the large databases that have aggregated
peak coordinates of activation across many stud-
ies (e.g., Brainmap [http://brainmap.org], SumsDB
[http://sumsdb.wustl.edu]) can facilitate this pro-
cess. An obvious limitation to this approach is that it
is restricted by the availability and breadth of imag-
ing studies that sample across a fixed number of
stimulus sets and task manipulations. Second, al-
though regions can be built around the hot spot of
a putative area for the purposes of node represen-
tation, this does not mandate that the region has
captured the “behavior” of the brain area in its en-
tirety. Building regions around reliable peaks of ac-
tivation will likely fail to include information from
area boundaries. By assuming a constant size fixed
around a peak, using functional regions to define
nodes may result in a misrepresentation of the true
relationship strength between brain areas.

A second technique is to look for abrupt
transitions in whole-brain patterns of either
anatomical or functional connectivity across voxels,

and then translate these transitions into boundaries
between cortical areas. The logic here is that a col-
lection of voxels belonging to a single area should
demonstrate similar patterns of relationships, and
that these patterns should be dissimilar between ad-
jacent brain areas. This method of area identifica-
tion has been accomplished for limited stretches of
cortex by tracking changes in DTI tractography67,68

as well as patterns of resting state correlations.69

It is important to validate that the bound-
aries identified using patterns of connectivity reveal
meaningful functional divisions. A recent study by
Nelson et al. applied the boundary detection analysis
with rs-fcMRI across a grid situated on the surface
of the left lateral parietal cortex (LLPC) in humans70

(Fig. 3A). Following identification of putative areas
based on their patterns of resting-state correlation,
graph analysis was used in conjunction with resting-
state connectivity to determine whether the peak re-
gions within these putative areas might be situated
within different functional communities. Commu-
nity detection revealed the presence of six distinct
functional communities within the LLPC. Impor-
tantly, the divisions were independently confirmed
by examining profiles of evoked timecourses during
the performance of tasks related to memory retrieval
(Fig. 3B). Additional support for similar divisions
in this part of the brain in humans has come from
examining profiles of connectivity across alterna-
tive brain imaging modalities (i.e., connectivity of
rs-fcMRI and DTI tractography71 as motivated by
divisions that were identified in probabilistic cytoar-
chitectonic maps72,73). Consistent with these latter
findings, the divisions noted by Nelson and col-
leagues demonstrate striking correspondence with
the same cytoarchitectonic divisions (Fig. 3C). No-
tably, a much earlier cytoarchitectonic parcellation
scheme by Brodmann7 does less well at identifying
the unique divisions (Fig. 3D).

In addition to boundary definition, a number of
other complementary methods may also be able to
provide a brain area parcellation using rs-fcMRI.
Some of these include clustering analysis of voxels
based on correlation pattern similarity,74 local con-
nectivity,75 and shared spatio-temporal covariance
(e.g., ICA; Ref. 46). Furthermore, some of these tools
may also be well suited to delineating parcellations of
subcortical structures (e.g., Refs. 76 and 77). Because
of the hierarchical nature of brain organization
(e.g., Ref. 51), diligence is required in employing
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Figure 3. Putative brain areas of the left lateral parietal cortex defined by rs-fcMRI boundary mapping and correspondence with
anatomically defined cortical parcels. (A) Colored underlay represents the results of probabilistic rs-fcMRI boundary mapping of
the left lateral parietal cortex (LLPC) of healthy young adults. “Cooler” colors represent stable rs-fcMRI patterns (i.e., point-to-point
similarity in the pattern of correlation maps), whereas “hotter” colors represent high border likelihood based on rapidly changing
rs-fcMRI patterns (i.e., point-to-point differences in the pattern of correlation maps). Grey spheres denote the peaks of stability
within each of the putative cortical areas generated from the rs-fcMRI boundary-mapping image. (B) The LLPC peaks identified
from boundary mapping are named and color coded according to their community membership based on patterns of rs-fcMRI
connectivity. Importantly, regions of the distinct communities exhibit dissociable patterns of functional activation during memory
retrieval tasks. Asterisks denote peaks that exhibited memory retrieval effects (hits greater than correct rejections; see panel to the
right) across a series of studies. Panels A and B adapted and modified from Ref. 70. (C) A recent cytoarchitectonic division based
on postmortem examination of 10 human brains 72,73 is painted on as an underlay and reveals relatively good correspondence with
LLPC peaks defined from rs-fcMRI boundary mapping. Although some differences still exist (e.g., no rs-fcMRI peaks were found
in the dark blue cytoarchitectonic parcel), the cytoarchitectonic parcellation offers greater specificity than an earlier one provided
by Brodmann (D). (E) Depicts the same LLPC peaks overlaid on parcels defined by morphological landmarks (i.e., gyral and sulcal
boundaries using automated anatomical labeling (AAL)80) to demonstrate rather poor correspondence with the putative rs-fcMRI
divisions. For example, the parcel shaded in purple includes many regions that are part of distinct functional communities.

many of these methods to ensure that the clusters
represent, as best as possible, individual areas and
not adjacent areas with similar properties or con-
nectivity, or worse yet, collections of distributed ar-
eas that are actually neighbors of one another or a
community within the network.

Three additional limitations, pertaining to tech-
niques that strive to identify areas via transitions in
connectivity or clustering, are worth considering.

First, the arbitrary nature of the spatial positioning
of voxels during data acquisition may preclude de-
lineation of sharp boundaries. Second, spatial reg-
istration of area boundaries across participants is
likely to be difficult in practice. Third, nodes that
represent areas will inherently differ from one an-
other in terms of their physical size. As larger areas
are composed of a greater number of voxels, and
signal variance will scale with the number of
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voxels that contribute to its estimate, quantification
of pairwise relationships may be disproportionately
more reliable for larger brain areas.

As a practical solution, ROIs can be built around
the peaks or centers of putative areas that have been
identified using transitions in connectivity or clus-
tering, such that voxels at the boundaries are ex-
cluded. This approach helps to minimize the likeli-
hood that the node inadvertently crosses an area’s
boundaries both within and between participants.
Building fixed size regions (e.g., spheres) around the
peaks or centers of putative areas has similar benefits
and also alleviates some of the problems pertaining
to differences in signal variance that will accom-
pany interrogation of nodes that represent areas of
different sizes.

As there is presently no complete description of a
brain area parcellation, there have been several addi-
tional proposed solutions for defining brain nodes
for the purpose of network analysis. These solutions
typically provide a full parcellation of the brain, but
many of these solutions do not specifically strive to-
ward mapping area distinctions. The trade-off be-
tween using a partial brain area parcellation that
is constrained by neurobiology and a full parcella-
tion that is not subject to the constraints has, in
our opinion, led to numerous discrepancies both in
terms of how investigators have chosen to label a
“node” and in terms of what the analyses of these
networks reveal.

A commonly used brain parcellation technique
identifies gyral and sulcal boundaries to segment
the brain into morphologic parcels (e.g., Refs. 78–
80). These parcels have been used as brain nodes
across a series of brain network studies. In addition
to the considerable variation that is present across
macroscopic surface features that limit the extent to
which a given parcellation can be applied across sub-
jects (e.g., Ref. 81), it is important not to confuse
these anatomic parcels with actual cortical areas.
Functional areas need not obey the divisions cre-
ated by parcellation techniques based on anatom-
ical landmarks. A functional area can span across
a morphological boundary and multiple areas may
be present within a single morphologically defined
parcel. The localization of area V1 described ear-
lier serves as a prominent example for both of these
points. Area V1 in human and many nonhuman
primates spans the calcarine sulcus, occupying its
upper and lower folds (although it should be pointed

out that this feature is accommodated in a few of
the anatomically based parcellation schemes82,83).
In turn, the crown of the outward folds also main-
tains the representation of the adjacently placed area
V2 such that the V1/V2 border is delineated by fea-
tures that are independent of their copresence on a
gyral fold, as outlined earlier. Consistent with these
preceding arguments, focusing on the putative pari-
etal divisions outlined earlier reveals that multiple
regions may be represented within a single anatomi-
cal parcel, and single areas may span multiple parcels
(Fig. 3E).

One potential solution to avoiding coarse
anatomical parcels that may aggregate distinct areas
has been to subdivide the large parcels into smaller,
equally sized chunks using regular or random seg-
mentation. Although this approach acknowledges
the heterogeneity of areas that is present within
the larger parcels, its limitations should be quickly
apparent (in addition to ignoring the fact that
anatomic parcellation may divide brain areas at the
outset). First, without an idea of how many areas
should actually exist within a parcel, how does one
decide how many smaller chunks should be created?
Second, even if the quantity of areas was known, this
does not solve the problem of deducing their shape
or spatial arrangement. Brain areas vary in shape
and size, producing formidable limitations to the
approach. Within the human visual cortex, for ex-
ample, the size of V1 can be up to twice the size of V3
and need not correlate across individuals.84 These
differences are substantially more pronounced when
comparing across other areas.7,85 Finally, segmen-
tation of anatomical parcels into smaller chunks in-
troduces similar problems as that which is created
with anatomical parcellation itself: inappropriately
dividing true areas and potentially aggregating nu-
merous areas into a single chunk. Within the lateral
parietal cortex for example, without a prior knowl-
edge of the landscape of area boundaries (Fig. 3A),
segmentation is likely to incorrectly divide areas.

Conceptually similar to the random segmenta-
tion of coarse anatomical nodes, another method
of defining nodes has been to parcellate the brain
at the finest spatial resolution possible: at the size
of units of signal acquisition (i.e., voxels). Accord-
ingly, the likelihood with which a node contains
multiple distinct brain areas is minimized. Although
interrogating voxels is suitable in the statistical anal-
ysis of brain images when the goal is to identify

136 Ann. N.Y. Acad. Sci. 1224 (2011) 126–146 c⃝ 2011 New York Academy of Sciences.



Wig et al. Brain networks

clusters of voxels with similar properties (e.g.,
evoked activity, connectivity), treating a voxel as
a node in a network explicitly implies that it is be-
ing modeled as a distinct unit of information pro-
cessing. The theoretical problem should be clear.
Furthermore, modeling voxels as nodes also has
practical implications that will distort brain net-
work measures. Given that we are limited to the
level of areas with brain imaging, it is important to
remember that brain areas vary in size relative to
one another.7 For example, size difference can be
more than 33 fold among visually responsive areas
(e.g., V1 vs. MT; see Ref. 83). As all voxels existing
within a functional area will undoubtedly share an
edge with one another, graph measures that focus
on specific properties of nodes will be biased toward
nodes (voxels) existing within areas (and possibly
communities) that are larger than others, and mea-
sures describing global properties of the graph will
be distorted due to a misrepresentation of areas as a
function of the number of voxels they contain.

A number of investigators have begun to explore
how differences in node definition can affect net-
work properties. The results serve as a strong em-
pirical demonstration of some of the caveats of node
definition we have highlighted. Along with the de-
viation from the known organizational principles
of the brain, if the analysis was not sensitive to the
problems and constraints of area parcellation we
have outlined, then it is possible that the multiple
approaches for defining a node might converge on
similar results and patterns. However, differences
in node definition using a number of the methods
outlined above (anatomic parcels, random divisions
of anatomic parcels, voxels) produce large quantita-
tive and qualitative differences on measures of both
anatomical86 and functional87–89 brain networks.
Global network measures including those quanti-
fying the size of the most connected component,
clustering coefficient, path length, mathematical fit
of the degree distribution to a specific function (e.g.,
a power law), and efficiency all vary greatly across
the methods of node definition (e.g., see Table 1 of
Ref. 88). For example, depending on the sampling
procedure used, measures of “small-worldness” (!)
can deviate by more than 28-fold (compare !AAL [82
anatomically defined nodes] versus !4000 [randomly
parcellated nodes constrained by AAL parcels] in
Ref. 86; Figs. 4A and B). Similarly, network metrics
focusing on the behavior of individual nodes also

differ across the methods. For example, the identi-
fication of the node with highest degree (i.e., degree
centrality) can depend on the method of node def-
inition used (Fig. 4C). While qualitative differences
may be related to resolution limit in some cases, we
argue that a considerable portion of the deviation is
likely due to the behavior of nodes that are defined
by methods that are incompatible with one another
and, more importantly, do not represent the under-
lying organization of the brain.

We refer to the geopolitical map of the world to
serve as a final illustration of some of the caveats to
defining nodes by coarse and/or arbitrary parcella-
tion schemes (Fig. 5). If the aim were to build a net-
work in which the nodes represented the countries
of the world (Fig. 5A), parcellation based on coarse
morphological features such as boundaries of land
and water (Fig. 5B), random division of parcels into
similarly sized chunks (Fig. 5C), or uniform division
wherein nodes were represented by pixels (Fig. 5D)
would all result in serious mischaracterization of the
boundaries of countries. As a parallel, the problem
with applying similar approaches for defining brain
areas that have distinct properties and potentially
detectable boundaries should be evident.

Defining an edge in a brain network

In a graph, an edge represents the pairwise rela-
tionship or interaction between two independent
nodes. The resolution limit of brain imaging im-
poses similar constraints on edge definition as that
of nodes, wherein the modeled relationships must
represent either functional or anatomical connec-
tions between brain areas. We have principally
focused our discussion on measures of rs-fcMRI
whereby timecourses of activity are typically ex-
tracted from BOLD volumes that are collected while
participants are lying in the scanner passively fix-
ating a crosshair. rs-fcMRI most often focuses on
patterns of low-frequency (<0.1 Hz) BOLD sig-
nal fluctuations obtained during periods of rest and
has been linked to neuronal low-frequency poten-
tials in humans.90,91 Furthermore, rs-fcMRI signals
are inherently graded as they reflect the magnitude
of strength of correlation between voxels or brain
regions.

Although the collection of resting-state time se-
ries is relatively straightforward and can be per-
formed across different cohorts of individuals in
the absence of performance confounds, a number
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Figure 4. Brain area parcellation using anatomical borders or arbitrary divisions results in variable network metrics and node
properties. (A) Depicts six independent node parcellations including anatomical definition based on sulcal and gyral boundaries
(AAL80) and subparcellation of these anatomic parcels using an algorithm that randomly divides nodes to produce nodes of smaller
scale. (B) Depicts the quantification of network efficiency by way of a small-world metric136 across the different parcellation scales.
Small worldness (!) is defined as the ratio of a network’s clustering coefficient (normalized by a comparable random networks
clustering coefficient) relative to the network’s average path length (normalized by a comparable random networks average path
length137). As evident in the graph, the value of ! can differ up to 28-fold depending on the node parcellation scale (compare 82 node
AAL to 4000 node). This variability is largely driven by differences in the clustering coefficient (not shown) across the node sets.
(C) Depicts midsagittal slices of four of the node sets, with each node color coded according to its degree (number of connections)
within the network. The variability of node properties across parcellation scales is readily apparent. The nodes with highest degree
vary across the four node sets. Although the brain network using AAL parcellation identifies a node situated within the medial
parietal cortex as being the most connected (blue arrow), a region in anterior cingulate cortex is identified as being most connected
in the 3000 node set (green arrow). Connections were measured using DTI tractography. Figures adapted and modified from
Ref. 86.

of important issues in the analysis and interpreta-
tion of these signals merits consideration. We rec-
ognize that edge representation will surely evolve in
parallel to the development of more sophisticated
analysis techniques and a deeper understanding of
the underlying source of the signals. At present, the
approach we and many others have adopted and de-
scribed herein is relatively conservative. First, each
node’s resting state timecourse is extracted from a
given subject and preprocessed for removal of phys-
iological sources of noise. Second, pairwise corre-
lations between the timecourses of each node pair
are calculated to quantify the strength of relation-

ships. Finally, weighted adjacency matrices, whereby
edge weights are retained and reflect the strengths
of correlations between nodes are constructed and
sparsified according to a desired statistical or edge-
density threshold.

Several alternative choices may be made to esti-
mate the strength of functional relationships. For
example, pairwise relationships may be quantified
according to spectral coherence (e.g., Ref. 92), cor-
relations of wavelets derived from the variance de-
composition of the resting-state time series,93 or
measurements that estimate directional informa-
tion flow94 (importantly, the sluggish nature of the
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Figure 5. Coarse or arbitrary node parcellation can result in inaccuracies when building a network to represent the relationships
between countries of the world. (A) Map of the world’s countries (published in 2002). (B) Depicts a schematic in which areas are
divided according to large morphological features of the planet (i.e., boundaries between land and water). Although some countries
are accurately identified (e.g., Australia), this coarse parcellation scheme largely results in the aggregation of countries with distinct
and independent relationships (e.g., all countries within Europe and Asia are combined into a single large area). (C) Focuses on a
more recent depiction of the European subcontinent to demonstrate that randomly dividing coarse parcels into smaller chunks to
potentially account for nonuniformity can fail to accurately represent divisions. If no prior knowledge is brought to the parcellation,
single countries can be divided across multiple nodes (e.g., France), and a single node can contain multiple countries (e.g., the purple
node in the center spans the Czech Republic, Poland, Slovakia, and Hungary). (D) Similarly, arbitrarily dividing the map based
on a randomly placed grid of pixels can result in gross mischaracterization of countries. Large countries (e.g., Canada, Russia, and
United States) are split into multiple independent nodes, which could distort network metrics aimed at describing the organization
and behavior of countries in the world. Furthermore, this random division also misrepresents most geopolitical boundaries.

BOLD response coupled with the temporal resolu-
tion of functional imaging likely makes this latter
option quite difficult). As an alternative to using the
full correlation between a pair of nodes as a measure
of strength of relationships, some researchers have
begun to examine whether a partial correlation that
has regressed out the variance of other nodes that
may be mediating the relationship may be better
suited to defining pairwise functional relationships
(e.g., Ref. 95). Although simultaneously partialling
out variance from a large number of variables can
result in mathematical irregularities that distort the
underlying data, further developments of this ap-
proach may provide a robust way of estimating the
strength of more direct functional relationships.

One version of partial regression that has of-
ten been used as a form of preprocessing involves
regression of the mean global brain signal from each

voxel prior to extraction of the time series (e.g.,
Ref. 34). A consequence of this processing step is
that the correlations get distributed around a mean
value of “0,” producing strong positive and negative
correlations. As such, there has been a debate about
the validity and interpretation of the approach and
the observed negative correlations.96,97 The regres-
sion step mathematically mandates that the correla-
tions are distributed around the mean global signal.
Accordingly, although caution is certainly war-
ranted when interpreting the influence of one re-
gion over another based on the correlation of their
timecourses, it is fine to interpret the correlations as
reflecting covariance relative to the mean signal as
opposed to spurious artifacts that are epiphenome-
nal consequences of the mathematical pipeline.

Are negative correlations biologically meaning-
ful? Preliminary evidence suggests that they are.
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Negative correlations exhibit a distinct spatial struc-
ture, are consistent across subjects, and recent stud-
ies have demonstrated that they are present even
when the mean signal is left in (e.g., Ref. 98). Fur-
thermore, antagonistic relationships are expressed
throughout neurobiological circuitry and these re-
lationships have a direct impact on function. For
example, the caudate/putamen’s inhibitory projec-
tions onto the external capsule of the globus pallidus
within the circuitry of the basal ganglia99 or the in-
hibitory projections from the substantia nigra pars
reticulata on the superior colliculus100 are funda-
mental to the functioning of those systems. Future
work will be needed to determine the correspon-
dence between circuit inhibition, negative correla-
tions, and their influence on network structure.

Although many network edges are easy to define
and can be represented by the presence or absence
of the relationship of interest (e.g., whether or not
two stations are connected to one another in a rail-
way transportation network), many other edges are
more “fuzzy” such that a simple binary distinction
can be misleading. Relationships between brain ar-
eas exhibit this latter property, whereby the strength
of relationships (functional or anatomical) between
nodes is inherently variable or weighted. Caution
is warranted when constructing graphs that discard
the weight of the relationship measure (i.e., creating
an unweighted network), as reducing relationships
to binary distinctions results in losing important in-
formation about differences in the strength of the
relationships across pairs. Care must also be taken
when thresholding an adjacency matrix to remove
edges. Although thresholding can remove weak re-
lationships that may not be physiologically relevant,
excessive thresholding for the purposes of comput-
ing graph properties or constructing comparable
graphs across subjects or cohorts can result in the
creation of a matrix that, while sparse, misrepresents
the underlying connectivity. Edge weights likely re-
flect neurobiologically relevant properties of brain
organization. Variability across measured relation-
ships may reflect differences in the nature, strength,
density, or probability of detecting a relationship. Ef-
forts to quantify brain networks should keep these
issues in mind, as thresholding and dichotomiza-
tion can obscure important properties and alter the
characterization of the resulting brain network.

To conclude this section, we turn to a discussion
of the source of rs-fcMRI signals. Are functional

relationships obtained from rs-fcMRI equivalent to
the anatomical relationships that are identified by
measurement of fiber bundles using diffusion imag-
ing? A number of studies have attempted to directly
address this question (for reviews, see Refs. 101
and 102). A high degree of correspondence has, in
some cases, been observed between measurements
of functional and anatomical connectivity. Compar-
isons have ranged from those focusing on regions
on adjacent gyri,103 to distributed regions sampled
from a subset of interest,104 to the whole brain.105–107

Together, these studies provide strong evidence that
functional relationships obtained using rs-fcMRI
are likely constrained by the underlying anatomi-
cal architecture. Consistent with these findings, in-
vestigation of patients with agenesis of the corpus
callosum due to congenital defect,108 or following
complete resection of the corpus callosum for treat-
ment of intractable epilepsy109 have noted weaker
interhemispheric functional correlations relative to
intrahemispheric correlations suggesting that a por-
tion of the interhemispheric connectivity is medi-
ated by callosal fiber passages (but also see Ref. 110).

Importantly, although areas that share a direct
anatomical connection between one another typ-
ically exhibit a significant resting-state functional
correlation, the reverse need not be true. An ex-
ample of this comes from an investigation of the
macaque monkey where the functional correla-
tion structure of visually responsive regions reveals
subareal, retinotopic organization.111 Despite the
absence of direct interhemispheric connections in-
volving V1 away from the horizontal meridian,112

correlations between bilateral representations of the
peripheral visual field in V1 (e.g., along the ec-
centric portions of the horizontal meridian) are
stronger than the correlation between the peripheral
and foveal representations within one hemisphere
(Fig. 6). This suggests that the observed correlations
may be sustained by an indirect pathway that re-
spects visual retinotopy along the eccentricity axis
(e.g., via dorsal MT). Consistent with this, the afore-
mentioned study of human connectivity by Greicius
et al.104 noted an absence of direct anatomical con-
nectivity between the vmPFC and medial temporal
regions (as assessed using DTI tractography) de-
spite the presence of significant functional correla-
tions between these regions, suggesting that the re-
lationship may be mediated by connectivity via an
intermediate region (e.g., pCC). These and other
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Figure 6. Resting state correlations identify relationships between regions that do not share a direct anatomical connection. Maps
depict the results of a seed-based rs-fcMRI study in the Macaque. (A) The time course of a seed region placed in the left foveal
representation of V1/V2 is strongly correlated with the foveal representation of bilateral MT and contralateral V1/V2. Notably,
correlation with the peripheral representation of V1 is lacking. (B) The time course of a seed region placed in the left peripheral
representation of V1 is strongly correlated with the peripheral representation of bilateral MT and contralateral V1. This functional
connectivity is present despite a lack of a direct anatomical connection between peripheral representations of V1 across the two
hemispheres. Panels (C) and (D) depict the same correlation maps on inflated cortical surfaces for foveal and peripheral seed
regions, respectively. Together, these results provide evidence that resting-state correlations that respect visual retinotopy along the
eccentricity axis may be sustained by indirect pathways. Figures adapted and modified from Ref. 111.

results have all converged on the principle that pat-
terns of rs-fcMRI do not represent a 1:1 correspon-
dence with direct anatomical connectivity (where
anatomical connectivity is defined by the observed
presence of a fiber bundle). In line with these obser-
vations, incorporating indirect anatomical connec-
tions (i.e., those that mediate area-to-area connec-
tivity via two steps) can account for a further portion
of the variance observed in functional correlations
across numerous brain regions.106

If not exclusively a measure of direct anatomical
connectivity, what do functional relationships re-
flect and how are they established? One possibility
is that they reveal a form of unconstrained cognition
(i.e., “thinking”) present while subjects are resting
in the scanner. However, numerous pieces of evi-
dence suggest otherwise. The strongest of these are
based on the observation that the distributed pat-
terns of correlation are relatively stable across mul-
tiple states of alertness in addition to resting wake-
fulness including periods of sleep (e.g., Refs. 113
and 114), anesthesia (e.g., Ref. 115), and during task
performance (e.g., Ref. 116). Furthermore, given the

nature of the signal on which rs-fcMRI correlations
are based, if the low-frequency correlations are in-
dicative of actively “thinking,” one would have to
posit that these processes are occurring at a fre-
quency of at least once every 10 s (i.e., approxi-
mately 0.01 Hz). Curiously, a portion of rs-fcMRI
correlation variance may be effected by task de-
mands, imposing practical constraints on the col-
lection and analysis of rs-fcMRI (e.g., Refs. 117 and
118), but also providing preliminary evidence that
low-frequency signals may have an impact on im-
mediate behaviors, or vice versa.119–121

An alternative possibility, one that we favor
presently, is that the low-frequency relationships ev-
ident between brain areas during periods of rest
reflect a signature of coactivation that has been
sculpted over time. Resting-state relationships may
be mediated by a “Hebbian-like” mechanism in
which the continual recruitment of a set of areas
for a common purpose results in changes in the
synaptic efficiencies between them. Low-frequency
temporal synchrony may be a manifestation of these
changes and ultimately provide a medium for more
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efficient information transfer when the areas are
subsequently recruited for specific task demands.

Convergent data provide evidence for this hy-
pothesis. First, patterns of resting-state correlations
largely mirror the spatial distributions observed in
the context of task-evoked activity (e.g., Ref. 122).
Second, resting-state relationships can be modi-
fied in a relatively short time frame (i.e., hours to
days). Several recent studies have demonstrated that
resting-state correlations can be statistically modi-
fied when preceded by continuous training on tasks
that encourage the coordinated activation of specific
brain areas (often in a novel pairing), and the de-
gree of change correlates with behavioral measures
of learning during the task.123–128 Third, changes in
resting-state correlations have been noted over the
lifespan. For example, the development from adoles-
cence to young adulthood is accompanied by large
changes in patterns of resting-state connectivity and
network organization.117,129–132 Importantly, basic
long-range anatomical connectivity is adult-like by
the age of 9 months,133 suggesting that the observed
developmental changes are not due to this form of
neuroanatomical change alone.

As a final alternative, changes in functional con-
nectivity may relate to changing myelination or
white matter microstructure, which continues into
young adulthood134 and may be altered with exten-
sive training,135 ultimately facilitating signal propa-
gation across distant regions that might strengthen
resting correlations over time. Importantly, none
of the proposed sources of rs-fcMRI are necessarily
mutually exclusive or exhaustive. Most likely, the ob-
served patterns of rs-fcMRI correlations are a prod-
uct of more than one mechanism.

Final thoughts

Recent development of imaging hardware to capture
brain connectivity coupled with the availability of
sophisticated analysis tools to measure and under-
stand pairwise relations has presented us with the
opportunity to begin to understand the brain at the
level of a complexly organized large-scale network
of information processing.

If the goal is to understand how the brain is or-
ganized and behaves, then abandoning an appreci-
ation of the biological organization of the brain can
result in misrepresentations of any graphical mod-
els that have tacit assumptions necessitating accu-
rate definition of its constituent elements. Given the

current spatial resolution limit of human brain
imaging, efforts should be geared toward charac-
terizing brain areas as the objects of information
processing that the nodes in a graph represent. This
endeavor can be partially accomplished by capitaliz-
ing on the availability of large-scale data sets to iden-
tify “hot spots” of activity, or further development
of analysis techniques that identify area boundaries
or clusters based on patterns of correlation similar-
ity, connectivity, or other referents. Similarly, edges
should represent relationships between the objects
of information processing (i.e., areas). Relationships
can be quantified by calculating pairwise correla-
tions of the time series of nodes wherein the strength
of relationships are retained as edge weights.

Neuroscience has embraced a network-based ap-
proach as a lens under which to examine brain struc-
ture and function. Viewing the brain as a set of in-
teracting elements whose organization is inherently
complex yet ordered will undoubtedly facilitate our
understanding of brain architecture, function, and
its emergent behaviors across the life span, and in
health and disease.
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